Blacksheep: Detecting Compromised Hosts in
Homogeneous Crowds

Antonio Bianchi, Yan Shoshitaishvili, Christopher Kruegel, Giovanni Vigna
UC Santa Barbara
_ Santa Barbara, CA, USA
{antoniob,yans,chris,vigna}@cs.ucsb.edu

ABSTRACT

The lucrative rewards of security penetrations into larggani-
zations have motivated the development and use of many sophi
ticated rootkit techniques to maintain an attacker’'s preseon a
compromised system. Due to the evasive nature of such iofisct
detecting these rootkit infestations is a problem facingieno or-
ganizations. While many approaches to this problem have bee
proposed, various drawbacks that range from signaturerggoe
issues, to coverage, to performance, prevent these apg®&om
being ideal solutions.

In this paper, we preserlacksheep, a distributed system for
detecting a rootkit infestation among groups of similar hiaes.
This approach was motivated by the homogenous natures of man
corporate networks. Taking advantage of the similarity agso
the machines that it analysd&acksheep is able to efficiently and
effectively detect both existing and new infestations bsnparing
the memory dumps collected from each host.

We evaluateBlacksheep on two sets of memory dumps. One
set is taken from virtual machines using virtual machineospec-
tion, mimicking the deployment dlacksheep on a cloud comput-
ing provider's network. The other set is taken from WindowR X
machines via a memory acquisition driver, demonstraBiagk-
sheep’s usage under more challenging image acquisition condi-
tions. The results of the evaluation show that by leveradimeg
homogeneous nature of groups of computers, it is possibiie-to
tect rootkit infestations.

Categories and Subject Descriptors
K.6.5 [Security and Protection: Invasive software

Keywords

computer security, rootkit detection, kernel-based rit®tk

1. INTRODUCTION

Over the past several years, computer security has takeethe
ter stage, as several high-profile organizations haversaffeostly
intrusions. Oftentimes, as in the case of the 2011 RSA comise®

Permission to make digital or hard copies of all or part o twork for
personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

CCS 12, October 16-18, 2012, Raleigh, North Carolina, USA.
Copyright 2012 ACM 978-1-4503-1651-4/12/10 ...$15.00.

such intrusions begin as a foothold on a single infected mach
and spread out from that foothold to infect a larger portibthe
enterprise. In the case of the 2010 Stuxnet attack on Iraziean
reactors, this infection took the form of a kernel-basedkibo

Rootkits are pieces of software designed to stealthily figatie
behavior of an operating system in order to achieve mal&cgmals,
such as hiding user space objects (e.g., processes, fitesetmork
connections), logging user keystrokes, disabling secadftware,
and installing backdoors for persistent access. Althoutersl
detection and prevention techniques have been develogbdean
ployed, all have considerable drawbacks, and as a resotkit®
remain a security threat: according to recent estimategehcent-
age of rootkits among all anti-virus detections is in thegeaof
7-10% [17, 32].

The situation is further complicated by the fact that rooda-
sion techniques are continuously evolving [17]. One redenel-
opment that has greatly complicated rootkit detection éseimer-
gence of rootkits that work solely by modifying data, rerdgr
tools that focus on detecting code changes (such as thensyate
ginity Verifier [27]) ineffective. This drawback appliesteost cur-
rent detection techniques, rendering them ineffectivérasganemory-
only rootkits.

The goal of our work is to detect kernel rootkits, a broad <las
of rootkits that operate by modifying kernel code or kernatad
structures. We focus on the Windows operating system, sirise
both the most widespread and the most targeted platform. - How
ever, most of the concepts and techniques used are applitabl
any operating system.

The observation that motivates our approach to the deteofio
rootkits is the fact that modern organizations rely on largevorks
of computers to accomplish their daily workflows. In ordestm-
plify maintenance, upgrades, and replacement of their coenp,
organizations tend to utilize a standard set of softwaresatithgs
for the configuration of these machines. For example, a leoge
pany might make a standard image for employee workstatams,
other image for servers, a third image for virtualized dgplents,
and so forth. At the same time, such nearly-identical coemgut
are treated as unique entities when enforcing securitgigsliand
scanning for malware. We believe that by leveraging thelarini
ties between these computers, rootkits can be detectedigttler
accuracy and without the limitations of modern rootkit détmn
techniques.

Therefore, we propose a novel technique for detecting kerne
rootkits, based on the analysis of physical memory dumpsntak
from running operating systems. In our approach, a set ofongm
dumps from a population of computers with identical (or am)i
hardware and software configurations are taken. These daraps
then compared with each other to find groups of machines tkat a

similar. Finally, these groups are further analyzed to fifigethe
kernel modifications introduced by a potential rootkit tfen. In
particular, we look for outliers that are different than test. Our
insight is that these differences are an indication of a raswn- 2. RELATED WORK
fection.

We implemented our approach in a tool, calildcksheep, and
validated it by analyzing memory dumps taken from two sets of
computers. From each s8lacksheep is able to detect kernel mod-
ifications introduced by all the kernel rootkits that we ¢gksaind
can successfully discriminate between memory dumps taken f 2.1 Signature-based detection
non-infected and infected computers.

Blacksheep has several advantages over the state of the art. First
of all, Blacksheep can detect stealthy rootkit infection techniques,
such as data-only modifications of kernel memory. Additilgna
Blacksheep does not need to be configured to detect specific modi-
fications, because it relies on the identification of anoesaimong
a group of similar hosts. This means ttBhacksheep does not use
or rely on signatures, and can detect 0-days as effectigeitycan

A considerable amount of research has been done towards de-
tecting and defending against rootkit infections. In thasten, we
will discuss the state of the art and show where and Blagksheep
improves on such approaches.

The traditional method to detect malware is to match a stsgec
piece of malware against a database of byte-level sigratlee
scribing invariant content of known malicious software ,[20].
Although this technique is still widely used, it suffers fncsev-
eral major limitations. To begin with, the number of signatuthat
are required to detect currently known malware infectiaex-
ponentially increasing. Even taking into account only ketdmased
detect long-known threats malwa_re, itis still difficu_l'g to genera_t_e signaturt_es thatchibe poly-

) morphic software. Additionally, writing such signatureges time,

SinceBlacksheep bases its analysis off of a crowd of similarly-) . .
. ! and a completely new piece of malware often enjoys preciods u
configured machines, the system can be used on groups of ma-

. hindered time while new signatures for it are manually gateet.
chines in which some instances are already infected witkvaral - i
.) Furthermore, signature-based approaches generaleutiioks
As long as a viable memory dump can be obtained, and as long as.

= - . In order to scan software as it is written to disk or loadedefor
the majority of the machines comprising the crowd are not-com

.) . P . X ecution. This is often accomplished by hooking system caiid
promnsed,BIacksheep will be able tp identify mfecpons by com other kernel entry points; however, these methods can bdedva
paring the memory dumps of the involved machines. In coftras

. o - : . by adequately sophisticated software. For instance, soaiware
prior tools that utilize comparative techniques on datanfeosingle . . .)
. - . programs avoid saving themselves using the filesystem AdPiran
machine cannot be safely deployed onto infected compgierse

. . . stead write themselves to disk by accessing it directly.e©thal-
they would then have no safe baseline against which to campar . . .
. : ware samples utilize undocumented and unmonitored mesiani
Finally, becauseBlacksheep detects the differences among the . .)
) g i to execute themselves, thus evading detection by signbased
computers in a crowd, anti-virus software that modifies the k

; o e antivirus software.
nfel (often producing false positives for other rootkit dgiten tech- BecauseBlacksheep functions by detecting anomalous memory
nigques) can be properly accommodated, as such softwaredwoul

be deployed on all machines. Unstable sections of the Wiadow dumpg cqllected froml a group (.)f machines |n§tead of IO.Ong f
. o specific signatures of infection, it does not require theafsggna-
kernel, such as pages that contain self-modifying code dou-s o . .
.) . o tures. As such, it is well-built to handle previously-unseealware
rity purposes, can also be handled, since such sectionglifft threats
on each member of the crowd, aBthcksheep will not regard the ’
differences as suspicious. _ 2.2 Behavioral heuristic analysis
Note that while we have implement&lacksheep for Windows T he limitati f si based d -
XP and Windows 7, the approach that we take can be generalized. . 0 overcome the |m|tat.|onso. S|gnature-' ase .etecm. T;
' virus software often combines signatures with heuristitaveral

to any operating syste.m V\.”th kernfal memary. analysis [16]. With this approach, a process is analyzethguun-
In summary, our contributions are: . : S . : e

time and its behavior is monitored for signs of maliciousne=or
instance, a process that calls some particular secuitigadrsys-
tem calls with certain parameters (e.g., modifying file asceer-
missions or adding boot entries) might be classified as siag,
and the responsible process might be halted.

Behavior-based analyses are very hard to execute propgery.
framework performing this analysis must have a very goockund
2. Detection We present and implement an approach ut|||z|ng Standing of the direct and indirect effects of monitorechéseSuch

memory similarities to detect anomalies in a group of simila understanding is often imperfect, allowing malware to evae-

machines. Our approach can detect rootkits that use stealth tection, by performing "mimicry attacks”, similar to theesnde-

1. Forensics We detail our forensic investigation into the Win-
dows kernel and describe the considerations that must be
taken into account to successfully compare memory dumps
from two machines and to obtain a meaningful similarity
measure.

techniques to evade detection. scribed in [33].Blacksheep’s approach is based on the analysis of
the memory footprint of malware as opposed to its behaviud, a
As part of our investigation into Windows kernel rootkitsych therefore, such concerns do not apply.

research needed to be done on the internals of the Windowslker .
itself. Part of our contribution is the summary of this resba 2.3 Sandbox execution

hoping that it will be useful to other researchers. Certain malware detection schemes execute programs itualvir
The rest of this paper is structured as follows. Section gildet environment, isolated from the rest of the operating systerd log
the prior work in the field. Section 3 covers a high-level ev@r the actions performed, looking for the side-effects of drdtion,
of our approach. Section 4 covers the technical details 0fople- such as the creation of files, or the modification of the regidthis
mentation. We present our evaluation in Section 5, and aisson method is a good solution to polymorphic malware, since ésdo
of our system and its limitations in Section 6. Finally, wecide not depend on a signature of the file being analyzed. It cantas

the paper in Section 7. combined with behavioral heuristics for a more in-deptHysis.

The two biggest drawbacks of this detection method are perfo
mance and evasion. Such systems must wait until the sandbox e
ecution has yielded a classification before starting thgnam on
an actual system. This causes a noticeable delay in staffept-
ing the perceived performance of the system. Additionatigny
techniques allow malware to detect the presence of an emdulat
environment and, if one is detected, to modify its executiow.

Blacksheep does not rely on sandbox execution, but rather exam-
ines the modifications that the malware does to kernel memay
such, the startup speed of applications is not relevantesasion
is considerably more difficult.

2.4 System integrity checking

In the process of subverting normal system behavior, rtetki
must modify critical system code and/or data structure$. [E6r
this reason, one method for detecting rootkits is the cimecéf the
critical components of an operation system to ensure tlegtdne
in an expected state.

64-bit versions of the Windows kernel implement a featutieda
Kernel Patch Protection (KPP) [24]. KPP comprises an obfuscated
kernel function that is periodically executed to check thegrity
of critical components. [26, Chapter 3.14] contains furtiméor-
mation as to which kernel components are checked by KPP.

A similar approach has been implemented in the System Virgin
ity Verifier [27]. This tool is based on the idea that, exchglsome
specific locations (e.g., relocated pointers, data sesfidime image
in memory of a kernel module should be equal to the conteriteof t
file from which it is loaded.

Other approaches, specifically designed as a defense tigaicis
tion pointer hijacking in kernel memory, have also been Heve
oped [35, 37].

systems using low-level primitives can often reveal a fitidien by
a rootkit. Comparing several sets of similar informatioraited
by different means can often bring such inconsistenciesgtd, |
and reveal the presence of a rootkit.

This approach can be undertaken not only with hidden filess, bu
with unlinked processes, network connections, and other sys-
tem artifacts. Unfortunately, the number of such possihlersec-
tion points is very large, and the checks must, in generaljese
veloped manually. Thus, missing a modification done by akibot
is very likely. SinceBlacksheep examines the entire contents of
kernel memory, it does not suffer from this requirement fanonal
test development.

2.6 Invariant-based detection

The problem of kernel integrity verification is similar tatprob-
lem of discovering and verifying invariant properties viitliernel
memory. In particular, research has been conducted intdetez-
tion of such invariants in kernel data structures and theegbent
verification of kernel memory to ensure that it has not beefated
by a rootkit.

Petroni et al. propose an architecture to manually speeifgied
data invariants and to check them automatically [25]. Thitia
tecture allows one to easily declare properties that mudtihside
an uncompromised machine. However, manually specifyiry su
properties requires a deep knowledge of operating systemas,
and it is particularly difficult when no source code is avaliéa
Even if such source code is present, the size of modern eperat
ing systems makes manually specifying such invariantemety
difficult. Additionally, even if source code were presend amvari-
ants are automatically specified, the ability to load keresident
drivers in modern operating systems makes this task imiplessis

Yet more solutions have been proposed that are based on thethe contents of the kernel cannot always be known ahead ef tim

hardware virtualization features in modern processors3Pj3 The
idea behind these approaches is to take advantage of harsirar
tualization to perform integrity verification at a higheriilege
level than the one at which the kernel code (and the rootké) a
executed.

with complete certaintyBlacksheep does not require such knowl-
edge, and will function as long as the kernel modules in dgomest
are present in a sizeable part of the machine crowd.

Other invariant-enforcing frameworks are Hello RootKity2]
and HyperForce [11]. However, these systems rely on a pedet

One fundamental challenge with these systems is the fatt tha mined list of invariantsBlacksheep has no such requirement.

they must identify a baseline with which to compare the aurre
state of the system that they are protecting. In the caseedbyis-
tem Virginity Verifier, the baseline is defined to be the atfiles

on disk from which the kernel is loaded. However, malward tha
is motivated enough could also modify these files, thus @biru
ing the baseline. In other cases, the state of the system thleen
software was loaded is used. If the system is already irdegten
such software is loaded, however, this can also provide proper
baseline.Blacksheep’s contribution over these existing systems is

The state of the art in automatic invariants detection ietas
on Daikon [10]. Daikon is a tool developed to automaticalig-d
cover pre-conditions and post-conditions that hold whey@mm
functions are called. Baliga et al. have adapted Daikon tckwo
on kernel data structures. Their tool, Gibraltar [5], iseatd de-
tect previously-known rootkit that modify the data struesiof the
Linux kernel. However, this tool, and a similar approach lieap
mented for Windows, called KOP [8], requires kernel souragec
to extract a graph of kernel data structure relationshipshSource

the fact that a baseline does not have to be defined. Working oncode is often unavailable, especially in the case of extelmzers.

the intuition that a malware infestation begins on a subteta
chines Blacksheep can determine a baseline that is unrelated to the
integrity of individual machines. Additionally, while mositegrity
checkers analyze the code of a syst8hacksheep also carries out

a data analysis. This allonBlacksheep to detect rootkits that do
not analyze code.

2.5 Cross-view detection

Cross-view detection is another popular rootkit detectirh-
nigue that is implemented by several detection tools [1], 6TBis
approach relies on the fact that the same information abwait t
state of a system can be obtained in different ways. Forrinsta
the presence of a file is commonly detected by utilizing Uesest
APIs. The information returned by such APIs can be easibratt
by a rootkit to hide the presence of files. However, scannileg fi

Furthermore, security systems that contain kernel-baseapo-
nents introduce additional complexity into the real-woulse of
such programs. In contradd|acksheep requires no knowledge of
source code.

The use of invariants based on graph signatures has beeg-impl
mented by SigGraph [22]. However, SigGraph requires thé-ava
ability of source code or debug information, whtacksheep has
no such requirement. Additionally, similar ideas have bagplied
to filesystem changes with Seurat [36].

2.7 Physical memory analysis

Physical memory analysis is an active area of research whose
aim is to capture reliable and complete information fromwa li
acquisition of the physical memory of a running system. & ha
been studied mainly in the context of forensic and malwagedyan

sis [7,13], and several specialized tools have been deveélapper-
form such analyses. Such tools include HBGary Respond€e2Pro
and Volatility [34].

Volatility is an open-source framework for physical memanal-
ysis, containing an extensible plugin structure that atlder the
implementation of various analyses. Various plugins haentde-
veloped, including those that perform malware detectiahamal-
ysis [21].

The detection of memory allocated inside the Windows kernel
heap has also been studied [29,30], as has the use of infomeat
tracted from the Windows swap file [19] (albeit, mainly fordéasic
purposes).

Blacksheep utilizes Volatility with build-in and specifically de-
veloped plugins to support its operation. In addition, iaide to
deal with physical memory dumps created by several comnuis to
for memory acquisition.

3. APPROACH

Blacksheep is designed to detect rootkit infestations in kernel
memory. Blacksheep’s design is motivated by the realization that,
regardless of how much a rootkit tries to hide itself, it mstt be
accessible by the operating system in order to be executhts T
concept is known as the Rootkit Paradox [18]. Additionadlyen
if a rootkit manages to hide its code from the operating syste
the data modifications it makes can still be detected. Winifees
conceptual rootkits have been demonstrated that can ctehple
unplug themselves from the system [22], they do so by maaglin
pointers and destabilizing the victim operating systenmer&f the
operating system survives these modifications, the poméatipu-
lations can still be observed.

With this basic idea in mind, we creatBthacksheep, which com-
pares images of physical memory taken from similar machioes
identify differences associated with rootkit infectiorélacksheep
is most effective when operating on a crowd of similar maekin

Code comparison.Most rootkits directly overwrite or augment ex-
isting code in kernel space with malicious content so they tan
perform subversive tasks (such as hiding resources) wligendte
is executed. Thus, a difference in kernel code between meshi
that should be otherwise identical can be a good indicatatr ah
rootkit may be present. However, due to the possibility ofige
differences resulting from, among other causes, codeattowtand
anti-virus defense techniques, a detected differencetmigfimec-
essarily mean that the machine is infectdlacksheep can filter
out benign differences and focus on suspicious code difteag
We discuss the specifics of this functionality in more detafec-
tion 4.2.

Memory comparison. Detecting differences in kernel code alone
is not enough to detect the presence of rootkits with higliaaoy.
For example, certain rootkits are able to subvert systeruotiom-
ality without performing any modifications to code running the
system, and, instead, they change kernel data structur@std
detection through code comparison. Because of the threatabf
rootkits, we compare kernel data between machines.

Comparing such data between two different machines is a non-
trivial task, and constitutes a large portionRicksheep’s contri-
bution. For statically allocated data segments (i.e.,glsegments
that are defined in and loaded from the PE file), the main ahgdle
is handling relocation. However, dynamically allocatednmoey
provides a more substantial challenge. This data ofteisticos-
tains many layers of data structures linking to each othéichv
must be navigated in order to ensure good coverd&jacksheep
uses several methods to be able to identify and compare suah d
structures, which are described further in Section 4.3.

Entry point comparison. Additionally, rootkits might subvert ba-
sic interfaces to the Windows kernel in order to carry ouirtizesks.
This includes the Windows kernel SSDT, driver IRP communica
tion channels, and certain hardware registers in the x8titaces
ture. Blacksheep is able to compare sudkernel entry points by

Since we are comparing kernel memory snapshots, an under-processing the machines’ dumps of physical memory. We ptese

standing of this memory space is required. The Windows kerne
consists of manymnodules, which are PE files containing kernel
code and data. Modules can be operating system componemts (e
kernel32.dll) or hardware drivers (e.g., nvstor32.sygj] e use
these terms interchangeably. The module and driver fildsaded
into kernel memory in much the same way as dynamically linked
libraries (DLLs) are loaded into user-space programs, aalem
up the functionality of the kernel. Similar to Windows DLLr-
nel modules contain both code and data segments. Thesergsgme
require separate approaches in their comparisonsBkauisheep
treats them separately.

In summary,Blacksheep performs the following four types of
analyses, which are detailed in Section 4:

e Configuration comparison;

Code comparison;

Data comparison; and

Kernel entry point comparison.

Configuration comparison. Some rootkits come in the form of
a kernel module that is loaded into the system. To identifshsu
changespBlacksheep does a “configuration comparison,” compar-

the details of this kind of analysis in Section 4.4.

Clustering and detection. After comparing each pair of mem-
ory dumps Blacksheep places them into clusters, according to the
differences present between them. The larger clusterhareas-
sumed to contain the clean dumps, and the smaller clusteta-ar
beled as suspicious. The assumption is that only a smatidrac
of the hosts are infected, and these hosts stand out agrsutlen
compared to the other machines in the crowd. This step issksd

in Section 4.5.

4. SYSTEM DETAILS

Blacksheep computes the differences between two memory dumps
to produce aistance metric. In the computation of differences,
Blacksheep looks for four categories of differences: high-level con-
figuration differences, code differences, data differenesd dif-
ferences in kernel entry points.

4.1 Configuration Analysis

Blacksheep is able to utilize configuration information obtained
from memory dumps to assist its analysis. Specifically, itris
possible to meaningfully compare the code of a kernel mobete
tween two memory dumps if one of the dumps does not have such a
driver loaded while the other does. Since rootkits ofterseauch

ing loaded modules between two memory dumps. This allows the differences (because they load additional componeBtagksheep

system to detect additional (and potential malicious) conemnts
that are introduced into the kernel. Details are presentefeic-
tion 4.1.

carries out the comparison of loaded kernel modules as aatepa
analysis. To accomplish this, a list of loaded kernel moslige
identified in each memory dump. Each kernel module is repre-

sented as a pair, consisting of the size of it originating s fi

tive offset within the same driver, the difference is copsatl to be

and the CRC checksum. The lists are sorted and compared. Thebenign.

distance metric thaBlacksheep generates for this analysis is equal
to the number of differences between the lists of kernel rtesdu
That is, each addition or deletion of a kernel module addstone
the distance value.

Hooking. The hooking of kernel functions is another potential
source of benign differences. Function call hooking is amégue
in which calls to a kernel function are redirected (and cahse
execution of some other piece of code). In many cases, this is

Note that some rootkits can (and do) masquerade the modulesdone by overwriting the first instruction of a hooked funntiith

they inject as common Windows kernel modules. In such antgven
the configuration analysis might not find the difference lestwa
malicious driver and a legitimate module installed in aeotma-
chine. However, this difference will be detected in the sgjoent
code analysis step instead (as the rootkit code will be vifigrent
from the legitimate driver).

4.2 Code Analysis

Most Windows rootkits inject code into kernel memory and+ed
rect legitimate flow of execution to itBlacksheep's code analy-
sis checks for signs of such redirections by identifyindedénces
in driver code. Since the header information from the PE fifes
kernel modules is stored in memoBiacksheep can examine the
headers of all loaded drivers to identify segments comgidriver
code.

For each kernel module that is loaded in both memory dumps,
Blacksheep compares all code segments within both modules, byte-
by-byte, to identify a list of bytes that differ. In princglone could
expect that the code segments associated with two idemtioet
ules are the same between machines (after all, it is the sade c
on disk). However, this is not the case, and there are seireral
stances of expected differences that will be present betwede
segments Blacksheep handles these cases specifically. More pre-
cisely, when differing bytes are identifielacksheep checks them
against the following categories, which we consider benign

Relocation differences.The most frequent differences between
driver code segments are caused by relocation. That i diners
are loaded into a location in memory that is unknown at com-
pile time, and Windows module code is not position indepahde
pointers within the driver have to be updated to reflect thea}
tion. Since, other than relocation, the relative memonplayof
loaded modules is kept intact, relocation differences betwtwo
memory dumps can be easily identified. The reason is thatithe d
fering bytes will be part of pointers that point to the sardative
locations within each driver. Thus, whé&acksheep finds differ-
ing bytes, it first checks whether these bytes are possibtegre
(values that point into code segments of the driver). If twohs
pointers are identified, and they point to the same relatffseb
into the same driver, this code difference is marked as Inenig

Note that on the x86 architecture, pointer locations neddao
aligned at word boundaries. Hence, if there is a one-byferdifice
between the code of two modules in two different memory dumps
on a 32-bit systenBlacksheep would make four comparisons: one
with that byte as the most significant in the pointer, one \itits
the second-most significant, and so forth.

Imports and exports. Another benign difference between mod-

a jump instruction pointing to the hooking function (so thatall
to the hooked function willimmediately result in the hoddifunc-
tion being executed). When the hooking function in both mgmo
dumps is located at the same offset in some module (in a stadie
region), the hook is treated as benign.

Hooks that point to dynamically allocated memory must batee
differently, since their offset to the hooking driver wilbhbe con-
stant. To this endBlacksheep first identifies the hook target: The
differing bytes are checked to determine if they are theraegu of
ajmp or call instruction. If so,Blacksheep calculates the memory
addresses pointed to by the hook in the two dumps from the jump
target. If the bytes are not used as the argument for a dioget ¢
trol transfer instruction, we check whether they are thessugnt
of a push instruction, and if aret instruction follows. The result
of executing these instructions would also be a jump to ttshed
memory address. In this cag&lacksheep recognizes the argument
of the push instruction as the location of the hooking fuorcti

OnceBlacksheep identifies the locations the hooking functions,
it needs to compare the functions themselves to detecteliftes.
Blacksheep identifies the end of the functions by linearly disas-
sembling them until aet instruction is found. Each byte before
theret is then compared using the same mechanism as for regular
code segments. Using this meth@tiacksheep can compare hooks
pointing to dynamically allocated memory, which are oftsediby
security software.

PE header differences.Windows sometimes modifies specific
fields in the PE header of kernel modules as the modules atedoa
Because of this, we consider differences in the followinghe&der
fields benign:

e ImageBaseAddress
e PointerToRelocations (for each PE section)
o NumberOfRelocations (for each PE section)

Suspicious differences.Any differences that are not classified
as benign, according to the above categories, are condidaspi-
cious. Since a common modification done by rootkits is a goint
modification, we count any adjacent set of 4 (or fewer) bytés i
one difference. Blacksheep uses the number of such differences
as the distance metric for its code analysis. Due to the numbe
of changes introduced by rootkit infections, this distaisckigher
between an infected and clean memory dump than between two
clean dumps (or two dumps infected with the same rootkit). In
particular, the number of suspicious code differences éetwwo
non-infected dumps is usually zero.

4.3 Data Analysis

ules can be caused by imported and exported symbols. These ex Recently, proof-of-concept rootkits have been demoresirtiat

ported symbols take the form of lists of resource names and-me
ory locations. When the drivers that are exporting thesebsjm
are relocated, the export tables are updated accordingbsélbe-
nign changes can be detected in a similar way to the detecfion
relocation differences. If an identified difference is nartpof a
relocation differenceBlacksheep checks if the different bytes are
part of a pointer which points to the same offset within sorien
driver. If the bytes in both dumps are pointing to the sama-rel

affect the functionality of a system without making any ilagt
modifications to system code. In order to detect such ragtkit
Blacksheep must be able to compare kernel data in a sophisticated
matter. Windows kernel modules can allocate memory in tfo di
ferent ways: by statically reserving it, as in the various d@a
segments, and through dynamic allocation.

To compare data memory between two memory durBpack-
sheep utilizes a “memory crawling” approach to compare kernel

data. Memory crawling works as follows: The system procgsse
one memory region at a time, starting at the staticallyealted
data regions of each driver. These serve as the roots foreheony
exploration. WherBlacksheep finds pointers to additional data re-
gions (potentially allocated dynamically), it follows geepointers
and continues the exploration recursively.

For each regiorBlacksheep examines the value contained in ev-
ery (32-bit) dword and assigns it a category, as follows:

ZERO when the dword value == 0x00000000.

VALUE when the dword is a value that does not correspond to a
mapped location in memory.

POINTER when the dword is a pointer to a mapped memory lo-
cation.

Additionally, Blacksheep tracks the target of the pointers. For
each dword classified asROINTER, Blacksheep assigns one of
the following subcategories.

POINTER_SELF when the dword is a pointer to the memory lo-
cation of that pointer (self).

POINTER_NEXT when the dword is a pointer to the dword fol-
lowing itself.

POINTER_CODE when the dword is a pointer into a module’s
code segment.

POINTER_DATA when the dword is a pointer into a module’s
data segment.

POINTER_POOL when the dword is a pointer into a dynamically-
allocated pool.

POINTER_DLIST when the dword is a pointer to an element in a
doubly-linked list.

WhenBlacksheep encounters ROINTER_POOL (dynamically-
allocated memory) oPOINTER DLIST (doubly-linked list) sub-
category, additional work is necessary, as discussed ifottosv-
ing two paragraphs.

Dynamically-allocated memory. Dynamic allocation is handled
in Windows through the use of memory pools. Each discrete all
cation that is requested by a driver is tagged with a pootation
structure, containing the length of the allocation and &dracter
tag identifying the allocating driver. Before comparindaj®lack-
sheep builds a list of allocated pools inside the kernel. Thisdiah
then be used to detect pointers into dynamic memory.

If a dword is of subcategorl OINTER_POOL, all dwords from
the target allocation pool are also added to the analysist iEh
when Blacksheep finds a pointer into a pool of memory, this pool
is recursively added and analyzed (since it can be reachedgh
aroot). Any further dwords that are classifiedPBINTER_POOL
are processed recursively. This is done up to three levelssiing,
as a compromise between data coverage, execution timepis®l n
in the analysis.

Doubly-linked lists. The Windows kernel contains many data struc-
tures, and their definitions are available both through tleddivs
Research Kernel [4] and through Windows debugging symbols.
Relying on the availability of such definitions does not warkhe
general case, however, as many kernel modules (for exampl,
ules from third-party providers such as hardware manufactwor
security companies) do not provide this information. Neweless,
one extremely common structure is the standard doublyedtist.

This structure is extensively used for various purposekenVin-
dows kernel, and is easily recognizable in memory due todire |
out of the list pointers: the list comprises identicallgesi doubly-
linked list elements starting and ending at a standard &sidbr.
Thus,Blacksheep detects and treats doubly-linked lists in a distinct
way.

Because doubly-linked lists are often used to keep trackwif s
lar data (for example, a process lid)acksheep treats all elements
of the list in aggregate. That iBJacksheep keeps track of a single,
representative, element for the entire list, assigningtegoay and
subcategory to each dword that best describes dwords dotzat
tion in every element of the list (that is, it picks the most general
type). For example, if a list has two elememisandB, and the first
dword of A is classified a¥ALUE whereas the first dword @& is
classified aZERO, Blacksheep will classify the first dword of the
representative element #8\LUE. Blacksheep uses the size of the
dynamically allocated pools that the list elements aretetin to
determine the size of the list elements.

Naming. After generating a list of reachable memory locations
(dwords) and their categorieBlacksheep assigns canonical names
to each location to facilitate comparisons against othemorg
dumps. The names are assigned as follows:

For statically allocated data, Blacksheep generates a name con-
sisting of the name of the module and the relative offsetef th
data element within that module. For example, a statically-
allocated dword within atoskrnl.exe's data segment (say,
102,088 bytes from the start of the driver) would be named
“(ntoskrnl.exe+102,088)".

For doubly-linked list headers, Blacksheep generates a name con-
sisting of the offset of the list header within its page in mem
ory, the pool tag of the list header’s pool (if available)e th
size of each element in the list, and the offset of the forward
link field within each list element. For example, a list heade
at offset 2,034 bytes into a pool tagged “NTKL,” with ele-
ments of size 24, which have the forward link field at offset
8, would be named “(NTKL+2,034, 24, 8)".

For data in a linked list element, Blacksheep generates a name con-
sisting of the offset of the list header name, and the offset
within the element. Note that this is done only for the rep-
resentative list element. For example, the dword at offset
of 4 bytes into an element of the list “(NTKL+2,034, 24,
8)” would receive a canonical name of “(NTKL+2,034, 24,
8)+4".

Blacksheep considers changes in the category or subcategory
of identically-named dwords between two memory dumps to be
differences. For example, if “(ntoskrnl.exe+102,088)"Iriscate-
gory ZERO in one dump an@OINTER in anotherBlacksheep will
count this dword as differing. We chose this granularityahpar-
ison because more specific comparisons (for example, camgpar
the actual values of integers) resulted in unmanageablei@ts of
noise (benign differences) in the analysis. Likewise, anyagen-
eral analysis quickly becomes meaningless.

The distance metric for data analysis is determined by the to
tal number of dwords whose classification differs betweenttvo
dumps being compared. The differences that rootkits makieeto
data structures in memory cause such malicious dumps td stean
in this analysis.

4.4 Kernel Entry Points

Several mechanisms are used by Windows to switch execution
from user-mode to kernel-mode and to handle hardware irgesr

When an event triggers such a transition, a handler fungtamter
is loaded, and the kernel-mode execution begins at theidocat
pointed to by that function pointer. We call these functiainp-

Kernel entry point differences. Kernel entry points are com-
puted by comparing the target addresses between the d&éhagk-
sheep checks that each entry point points to the same offset within

erskernel entry points, since they are addresses where user-mode the same driver in both dumps. If the entry point points inyieainically-

code “enters” the kernel.

The analysis of these pointers is useful for in rootkit ditec
tools, since rootkits frequently modify their values taoallrootkit
functionality to be executed when a specific event occursis Th
technique allows rootkits to subvert kernel behavior, iseese fil-
tering kernel function invocationsBlacksheep checks the follow-
ing kernel entry points.

Interrupt Description Table (IDT). The IDT is a hardware mech-
anism offered by an x86-compatible processor to allow treatp
ing system to respond to interrupts. Windows only uses aditni
set of interrupts, mapped the remaining interrupts to dgerfienc-
tions (nameaht! KiUnexpectedinterruptXX, where XX is a number
corresponding to the interrupt). In a non-infected syst@hinter-
rupts are mapped to kernel functions insideskrnl.exe or hal.dll
modules.

InterruptOx2E is used to switch to kernel-mode when a system
call is performed. Even though Windows uses 8Y€ENTER in-
struction as opposed to the IDT to switch to kernel mode onerod
processors, this IDT entry is still set it KiSystemService.

SYSENTER. The SYSENTER assembler instruction is used to
quickly switch from user-mode to kernel-mode execution @dm
ern x86 machines. When this instruction is called, the etecu
moves to an address that is stored in particular machinef&pe
registers (MSR). Windows sets these registers in such a katy t
whenever the(SYSENTER instruction is executed, the kernel func-
tion namednt!KiFastCallEntry is called. This function, in turn,
calls the requested system call according to the valuedstorthe
EAX register and the currently active thread.

System Service Dispatch Table (SSDT)The SSDT is an ar-
ray of virtual addresses, where each address is the entny pbi
a kernel function. When a kernel function is invoked, thection
nt! Ki SystemService reads this table and jumps to the required entry.

The address where the SSDT is located is specified on a per-

thread basis in th&KTHREAD data structure. Moreover, a thread
can use more than one SSDT.

Usually, all threads share the same two SSDRiS(stemSer-
vice for native Windows APIs, implemented bytoskrl.exe, and
W32pServiceTable for user and Graphical Display Interface func-
tions, implemented bwin32k.sys). However, a rootkit can create
a new SSDT and modify KTHREAD structure to make the asso-
ciated thread use the new SSDT. Using this method, a roathkit ¢
avoid being detected by tools checking only the two cand8&
DTs.

allocated memoryBlacksheep adds these memory sections to its
code analysis. The distance metric that is calculated etitry
point analysis is the total number of such differences fdugtdveen
two dumps.

4.5 Clustering

In the clustering stefBlacksheep calculates a distance between
every pair of dumps, creates hierarchical clusters basd¢disdis-
tance, and uses these clusters to classify the dumps.

45.1 Combined Distance

Blacksheep uses the four analyses previously described to calcu-
late four differences between each memory dump pair. Our fou
analyses measure different things, which results in vefferéint
ranges of distance values. To combine our analyses reBlatk-
sheep first scales the distance values to a unit range (between 0 and
1). To this end, we find, for each of the four distances, theimax
mum distance value between any pairs of dumps. This maximum
is used as the respective normalization factor. Once narethl
the four distance values are simply summed up, for a finaduaist
value between each pair of memory dumps. While simple, this
approach allows each analysis to contribute equally to e diis-
tance, and our experiments show that it works well.

45.2 Clusters

Utilizing the distance metricBlacksheep divides the memory
dumps into clusters, using a standard, hierarchical aingtep-
proach. We use the implementation provided by SciPy, wiitis "
tance" linkage function. The threshold for the clusteritepsvere
derived manually, based on small scale experiments (welfthat,
overall, the distances between clean and infected dumptygire
cally noticeably larger than between two clean dumps).

Any generated clusters that contain less than a set thiksiiol
memory dumps are marked as infected. This threshold istedlec
based on the size of the analyzed set, under the assumpdiomoth
more than a certain fraction of the dumps would be infectetibi
taneously. With modern attack patters, we feel that thigraption
is avalid one. Specifically, a characteristic of APTs (AccedhPer-
sistent Threats) is the compromise of a small amount of mashi
by an attacker in a stealthy manner. For example, in the $tuxn
attack on Irani nuclear reactors, malware was distributed 0SB
drives to a small amount of machines. Likewise, many exasple
of APTs starting with a spear-phishing campaign to infedhgle

Call Gates. Call Gates are yet another mechanism to transfer machine have been documented. W!glacksheep would not be

control between x86 privilege levels. Call Gate descriptare
specified in the Global Descriptor Table (GDT), a data stmect
used by x86 processors that defines the characteristicsriolisa
memory areas.

effective against a network worm that propels a rootkit tigtoout

a crowd of machines, it would be effective against a compsemi

seeking to establish a foothold inside an organization.
Examining the clusters thBtacksheep produces can be informa-

Even though Call Gates are not normally used by modern oper- tive for further analyses, as certain rootkit familiesably cluster

ating systems, they can still be utilized by rootkits as &baor to
enable the calling of kernel-mode functions from user-mpde
grams without the need of a persistent rootkit kernel madule

I/0O request packet handlers. 1/0 request packets (IRPs) are
kernel data structures used by Windows kernel modules tarasm

nicate with each other and with user-mode code. When a kernel

module is loaded, an array of function pointers (one for d&th
type the module can handle) is initialized. Each of thesetfans
is invoked when the corresponding I/O request is receivethby
kernel module.

together. This can provide valuable insight into trackimi@ctions
throughout an enterprise.

5. IMPLEMENTATION

We initially implementedlacksheep for the analysis of memory
acquired through either QEMU [3] introspection or throulga tise
of a memory dumping driver. This allov&lacksheep to be used in
both cloud computing and physical deployment scenarios.

The implementation of thBlacksheep approach consists of sev-
eral phases. First, memory is acquired (by one of severah-met

nov ecx, [ebp+68h]

ods as described in Section 5.1) and transferred over thgoriet .
! I I) v cnp ecx, <copy of MSR 0x176 register>

to our analysis server. Then, the analysis server subntits to
distributed comparison workers, which generate compasidze-
tween each pair of memory dumps. Finally, the clusteringreng
processes the comparison reports and generates clusigdgtact
infections.

Figure 1: The value of the MSR 0x176 register is stored in the
KiTrap0l1 kernel function in Windows XP SP3.

.. on the specific hardware methods being used, and do not appear
5.1 Memory acquisition to have been utilized by rootkits as of yet. However, a safewa
A variety of methods exist to acquire a dump of the physical method might be helpful along with a hardware approach, tkema
memory (and, if applicable, a copy of the swap file) from a ingn sure that the dumps generated by the hardware device habeemt
machine. The method of choice affects the integrity and detep tampered with.
ness of the dump and the possibility of evasion by rootkite.\Wwi This method is difficult to deploy on a wide scale due to the
present a brief summary of these methods, and discuss their a hardware requirement.
vantages and disadvantages. While the acquisition metffiectsa Virtual machine introspection. When a system is running in-
the resultsBlacksheep supports dumps acquired with any of these side a virtual machine, the virtualization software rumgnon the
methods. host operating system can easily image the memory of thet gues
Software memory acquisition.Several tools exist with the pur- system. For instance, in QEMU, this is achieved through #e u
pose of acquiring physical memory dumps from Windows XP and of the pmemsave command. While the dump is being captured, the
Windows 7 operating systems. Such tools usually rely onsssce virtual disk can be parsed to recover the swap file.

ing the physical memory via th&éDevice\PhysicalMemory device Dump artifacts are minimized because the dump is taken while
present on these versions of Windows. Since the contentisysfp the guest operating system is suspended. Minor inconsisteare,

ical memory are highly sensitive from a security perspectinod- however, still possible due to in-progress memory writepeeially

ern versions of Windows restrict access to this device toméder in multi-processor systems.

drivers only. This necessitates the creation and loadinkeofel Using virtual machine introspection, the dumping process c
drivers to accomplish this task. not be tampered with by rootkits running on guest operatysy s

Additionally, acquiring the swap file of the system is anothe tem, since the process runs on the host. However, a rootkitl co
tricky task. Two software-based methods exist: (i) findimgia use virtual machine detection techniques to modify or teatd its
cloning the handle to the swap file that Windows creates atugta behavior when running inside a virtual machine, evadingctéin.
(so that the handle can be later passed to userspace andaphe sw .
file read using standard Windows APIs), and (ii) parsing yitsm 5.2 Dump Comparison

structures on the disk to copy the raw data directly. We ctiose We utilize Volatility as a library to process Windows memory
former approach, since it is independent of the underlyilegfs- dumps in the comparison step. This allows us to support sev-
tem settings. eral different versions of Windows (specifically, Volaijlisupports
Memory dumps acquired in this way tend to contain a large 32-pit versions of Windows from Windows XP SP2 through Win-
amount of inconsistencies, for several reasons. Firstitineping dows 7 SP1, and 64-bit support is planned as well), and attstra
driver and application itself must be loaded into memorgyéiy away minute changes between Windows service packs and major
modifying it. More importantly, however, is the fact thatrdp- releases. We have implemented partBhfcksheep as Volatility
ing memory by software is not an atomic operation, so the migmo pjugins to be able to process swap memory, because thisdanct
itself continues to be modified while the dumping procedangeir- ality was not available in Volatility.
formed. Additionally, such software can be easily tampewét Additionally, the SYSENTER target address described in Sec-
by rootkits, as it runs with the same privilege levels anchinsame tjon 4.4 and utilized in the kernel entry point analysis ituaty
memory space as the rootkit itself. stored in the MSR 0x176 x86 CPU register. This is problematic
Despite the disadvantages, since all that is required iffaze due to the fact that for certain memory acquisition methedsh as
installation, this method is the easiest to deploy on a laogée. the dumping of memory over DMA through the use of a hardware

Crash dumps and hibernation files.When a Windows system device, hardware registers (including MSR 0x176) are netda
crashes or it is hibernated, the operating system savespai®ia To surmount this obstacle, we have identified a location imory
of the physical memory to disk. Once this occurs, the memody @ where the Windows kernel stores an updated value of thistegi

swap can easily be read from the disk and utilizedtpcksheep. For example, Windows XP SP3 keeps this value inKii&rap0l

Even if these methods are effective in creating memory dumps kernel function, as seen in Figure 1. However, this is systpa
they are not feasible for a widespread usage due to the &tdhiby cific, and care has to be taken with regards to system upgvettias
require the system to be interrupted. using such an acquisition method.

Physical devices.Hardware solutions have been proposed for
dumping physical memory, exploiting the fact that extepeiph-
erals can utilize DMA to achieve direct access to system nmgmo 6. EVALUATION
In particular, hardware devices working on Firewire, PCCI&, We evaluatedlacksheep on two sets of memory dumps. The
and ExpressCard interfaces are available. first was acquired from a set of Windows 7 virtual machinesgisi
This method does not need any running software on the target QEMU VM introspection. Our virtual machines were images of
system, but some inconsistencies in the dumped memoryilire st Windows 7 on the same QEMU host system (so, we expect the
possible if the system is not suspended while dumping theanem operating system code to be identical in terms of hardwaverdr
Additionally, some specific memory locations, and the swhgp fi and kernel modules). As we discussed in Section 5, the atignis
cannot be accessed by this method. of memory images in this fashion from a virtual machine patu
Techniques to avoid the dumping of some memory regions by a very small amount of memory artifacts, and thus, this isdbael
hardware devices have been studied [28]. Such techniqpesde setting forBlacksheep.

tdss
tdss

non-infected non-infecte r2d2 tdss
non-infected non-infecte r2d2 tdss
non-infected non-infecte r2d2 tdss
non-infected non-infecte r2d2 tdss
non-infected non-infected stuxnet tld3
non-infected non-infected stuxnet tld3
non-infected non-infected stuxnet tld3
non-infected non-infected stuxnet tld3
non-infected non-infected zeroaccess zeroaccesy
non-infected non-infecte$ Zeroaccess zeroaccess

Table 1: Cluster results for the Windows 7 dataset with a clus
tering threshold of 1.8.

The second set of memory dumps was acquired using our mem-
ory acquisition driver from Windows XP machines (running on
VirtualBox) to test the performance & acksheep on non-perfect
dumps. The driver was used to acquire the memory dumps, and
these dumps were transferred over the network to a centradrse
This method of acquisition produces many inconsistencies,
thus, introduces noise infBlacksheep’s analysis.

In addition, we have performed different, common tasks @n th
different machines (such as web browsing, working on Offioe d
uments, watching media files, ...) to ensure that the memampd
are diverse.

We tested these configurations against a range of publiely-av
able rootkits. In particular, we used the well-known Melir@iuxnet,
Rustock, and Blackenergy rootkits, two rootkits in the TO&Sily
(tdss and tdI3), and the r2d2 Trojan developed by the Gerroan g
ernment. Unfortunately, several existing rootkits do netdtion
properly on Windows 7, so the range of tested rootkits is kEmal
for the first data set (the Windows 7 - QEMU data).

6.1 Windows 7 - QEMU Introspection

We testedBlacksheep against a set of 40 memory dumps taken
through QEMU VM introspection. Within the set, 20 of the dwsnp
were clean, and 20 were infected with rootkits, with 4 maekiim-
fected with each of 5 rootkits. After analyzing these duniback-
sheep generated a hierarchical clustering, shown as dendrogram i
Figure 2. Based on the selected cluster distance threshagos-
sible sets of clusters are shown in Table 1.

The detection rate dBlacksheep depends on the threshold cho-
sen in the clustering step. After producing clusters, alstdrs of
size 4 or less were tagged as malicious. This is because veetexp
that benign dumps group together, while infected dumps fautn
liers, and that infected dumps will not account for more thépo
of the installed machines in an organization. With a thrélod
1.8, Blacksheep achieves a true positive rate of 100%, and a false
positive rate of 0%. As expected, all rootkits cluster tbgetwith
other rootkits in their families. This is because of the &mdif-
ferences that these rootkits introduce into the kernel eodidata.

6.2 Windows XP - Driver-acquired Memory

Blacksheep was also tested in detecting rootkits on Windows XP.
Again, 10 clean dumps were clustered, this time togethen ®it
rootkits. The hierarchical clustering results are showRigure 3,
and resulting clusters are shown in Table 2. Again, all elssof
size one were tagged as malicious.

With a clustering threshold of 0.®lacksheep produced 62.5%
true positives and 0% false positives, and with a clustettingsh-
old of 0.4,Blacksheep produced 75% true positives and 5.5% false
positives.

tdss

tdss

non-infected
non-infected
non-infected
non-infected
non-infected

non-infected
non-infected
non-infected
non-infected
non-infected
non-infected
non-infected
—[non-infected
non-infected

non-infected
|:non-infected

non-infected
_Enon-infected
non-infected
non-infected

|-r2d2
Lr2d2

|-r2d2
lr2d2

|:stuxnet
stuxnet

f—stuxnet

L_stuxnet
,—td|3

—tdI3
~tdI3

tdI3
rzeroaccess

lzeroaccess
;zeroaccess

lzeroaccess

Figure 2: Hierarchical cluster dendrogram for the Windows 7

non-infected
-:non-infected
. L————stuxnet
tdss
non-infected
non-infected
non-infected
non-infected
non-infected
non-infected
r2d2
non-infected
rustock
non-infected
mebroot
zeroaccess
tdi3
blackenergy

Figure 3: Hierarchical cluster dendrogram for the Windows
XP dataset.

rustock
r2d2
non-infected
non-infected
non-infected
non-infected
non-infected
non-infected
non-infected
non-infected

rustock

r2d2
non-infected
non-infected
non-infected
non-infected
non-infected
non-infected
non-infected

stuxnet
non-infected
non-infected

non-infected

tdss

stuxnet
non-infected
non-infected

mebroot

tdss

zZeroaccess

mebroot

tdI3

zeroaccess

blackenergy

tdI3

blackenergy

Table 2: Cluster results for the Windows XP dataset with a
clustering threshold of 0.5 (left) and 0.4 (right).

These results demonstrate how critical consistent memonps
are toBlacksheep's operation. Specifically, while configuration
analysis, code analysis, and entry point analysis perfommsevell
as for the QEMU images, data comparison suffered. This igaue
kernel data continuing to change while the dump is being isedu
creating inconsistencies in the final image. In contrast,dbde
and entry point sections of kernel memory are consideratdgem
stable.

6.3 Performance

The runtime performance ®&lacksheep depends on several fac-
tors, including the size of the memory dumps, the size (oeiadtxs)
of the swap file, and the hardware involved. For memory dumps
of one gigabyte of RAM, we were able to compute the difference
between a pair of memory dumps in 10 minutes. The hierarchica
clustering require®(n?) comparisons, but the results are cached
so that after the initial clustering, every new dump will uee
O(n) comparisons to recompute the clusters. The comparisons
themselves are trivial to parallelize, and the clusterieg $s com-
puted very quickly, sdlacksheep can be horizontally scaled to
linearly increase performance.

7. DISCUSSION

In this section, we discuss the limitations of our approd&thck-
sheep relies on two main assumptions: i) it is possible to collect
comparable memory dumps, and ii) rootkit infections modikym-
ory dumps in a detectable way. When either of these assunsptio
is violated, the approach implementedBiyacksheep fails.

The first issue is related to how and when the dumps are col-
lected. To maximize the homogeneity among memory dumps, it
would be best to collect memory snapshot in similar stated &t
similar times) across all hosts. Unfortunately, it is notays easy
to determine “checkpoints” that are comparable across mesh
and, therefore, it can often be the case that memory dumgohre
lected at very different times, and in very different statesulting
in unwanted differences in memory layout and contents.

Furthermore, it is extremely important to minimize the n@mb
of inconsistencies in the analyzed memory dumps. This ispa-e
cially challenging problem when acquiring memory from phgb
hardware, as the various acquisition methods detailed Ihtage
various drawbacks.

Virtualization and cloud-based systems offer an idealrggfor
the collection of memory dumps, as many virtualization eswi
ments offer the ability to take snapshots of the guest ojperays-
tem at well-defined times, which improves the chances otcoll
ing homogeneous images. In addition, virtualized hardveare
offer a level of homogeneity that real hardware would not ble a
to achieve, as real hardware can fail and might be substituta
different lines of products, which, in turn, might requirdferent
drivers.

The second issue is related to the way in which rootkits affex
layout and contents of memory. Rootkits could attempt taleva
detection by modifying parts of the kernel memory that, bgigie,
change frequently across machines. These high-entropg aes-
not be used as a basis to determine the crowd invariantsthard;
fore, represent an opportunity for evasion. Our technicarenot
detect this type of rootkits. However, the implementatiérsuch
system would be very challenging (and, in fact, there arenuovk
instances of such malware), because the same unpredigtétmlt
makes deriving invariant difficult, would likely make a ré&itun-
stable.

Another problem is the process of updating a crowd of similar
computers, which might introduce changes that are misstesteas

an infection. In this caseBlacksheep would need to be disabled
until a sizable amount of machines are updated, and a sufficie
baseline re-established.

Finally, it is important to note thaBlacksheep’s approach is ag-
nostic to memory location randomization techniques su#t&isR.
This is due to the fact thdlacksheep compensates for relocation
in its code analysis, and uses relative memory locationgdalata
and entry point analyses.

8. CONCLUSIONS

In this paper, we have describ&lacksheep, a novel system
designed to detect kernel-level rootkit infestations inrana of
similarly-configured machines. We have discussed the custate
of the art in the field, argued whglacksheep extends it, and pre-
sented the results of our analyses. We feel Biatksheep would
be an useful tool for organizations with the right populatad ma-
chines, as such organizations can greatly benefit Btatksheep’s
ability to recognize existing infections and 0-days ancease of
administration compared to present security offerings.

Furthermore, we have offered the insight into some intexosk-
ings of the Windows kernel in the hopes that it would be ustful
the scientific community.

Acknowledgments: This work was supported by the Office of
Naval Research (ONR) under Grant N000140911042 and the Na-
tional Science Foundation (NSF) under grants CNS-08458589 a
CNS-0905537.

9. REFERENCES

[1] Gmer. http://lwww.gmer.net/, May 2012.

[2] Hbgary responder pro.
http://www.hbgary.com/responder-pro-2, May 2012.

[3] Qemu website. http://qgemu.org, May 2012.

[4] Windows academic program.
http://www.microsoft.com/education/facultyconneatio
articles/articledetails.aspx?cid=2416, Apr. 2012.

[5] A. Baliga, V. Ganapathy, and L. Iftode. Detecting

kernel-level rootkits using data structure invariahEEE

Transactions on Dependable and Secure Computing, Vol. 8,

No. 5, Sept. 2010.

B. Blunden.The Rootkit Arsenal. Wordware Publishing,

2009. Chapter 7.9.

M. Burdach. Finding digital evidence in physical memdry

Black Hat Federal Conference, 2006.

M. Carbone, W. Lee, W. Cui, M. Peinado, L. Lu, and

X. Jiang. Mapping kernel objects to enable systematic

integrity checking. IPACM Conf. on Computer and

Communications Security, 2009.

B. Cogswell and M. Russinovich. Rootkitrevealer.

http://technet.microsoft.com/en-us/sysinternals@yagi5,

Nov. 2008.

M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant,

C. Pacheco, M. S. Tschantz, and C. Xiao. The daikon system

for dynamic detection of likely invariant&cience of

Computer Programming, 69, Dec. 2007.

F. Gadaleta, N. Nikiforakis, J. Muhlberg, and W. Joasen

Hyperforce: Hypervisor-enforced execution of

security-critical codelnformation Security and Privacy

Research, pages 126-137, 2012.

F. Gadaleta, N. Nikiforakis, Y. Younan, and W. Jooseell®i

rootkitty: a lightweight invariance-enforcing framework

Information Security, pages 213—-228, 2011.

(6]
[7]
(8]

[9]

[10]

[11]

[12]

[13] G. L. Garcia. Forensic physical memory analysis: an
overview of tools and techniques. TiKK T- 110.5290
Seminar on Network Security, 2007.

[14] K. Griffin, S. Schneider, X. Hu, and T. cker Chiueh.
Automatic generation of string signatures for malware
detection.

[15] G. Hoglund.Rootkits: Subverting the Windows Kernel.
Addison-Wesley, 2005.

[16] G. Jacob, H. Debar, and E. Filiol. Behavioral detectibn
malware: from a survey towards an established taxonomy.
Journal in Computer Virology, 4:251-266, 2008.
10.1007/s11416-008-0086-0.

[17] A. Kapoor and R. Mathur. Predicting the future of stkalt
attacks Mirus Bulletin conference, Oct. 2011.

[18] J. D. Kornblum. Exploiting the rootkit paradox with

windows memory analysisnternational Journal of Digital

Evidence, 2006.

J. D. Kornblum. Using every part of the buffalo in windsw

memory analysisDigital Investigation, Mar. 2007.

Z. Li, M. Sanghi, Y. Chen, M. yang Kao, and B. Chavez.

Hamsa: fast signature generation for zero-day polymorphic

worms with provable attack resilience. 8 ' 06:

Proceedings of the 2006 | EEE Symposium on Security and

Privacy, pages 32—-47. IEEE Computer Society, 2006.

M. H. Ligh. Volatility malware plugins.

http://code.google.com/p/malwarecookbook.

Z.Lin, J. Rhee, X. Zhang, D. Xu, and X. Jiang. Siggraph:

Brute force scanning of kernel data structure instancegusi

graph-based signatures.the 17th Network and Distributed

System Security Symposium, 2011.

McAfee. Mcafee deepsafe.

http://www.mcafee.com/us/solutions/mcafee-deepaspe,

2011.

Microsoft. Kernel patch protection: Fag.

http://msdn.microsoft.com/en-us/

windows/hardware/gg487353, Sept. 2007.

N. L. Petroni, J. Timothy, F. Aaron, W. William, and

A. Arbaugh. An architecture for specification-based

detection of semantic integrity violations in kernel dynam

data. InProceedings of the USENIX Security Symposium,

pages 289-304, 2006.

M. E. Russinovich and D. A. Solomondows Internals.

Microsoft, 5th edition, June 2009.

J. Rutkowska. Rootkits vs. stealth by design malware.

https://www.blackhat.com/presentations/bh-europe-06

bh-eu-06-Rutkowska.pdf, 2006.

[28] J. Rutkowska. Beyond the cpu: Defeating hardware based
ram acquisition (part i: Amd case). Black Hat DC, 2007.

[29] A. Schuster. Pool allocations as an information soimce
windows memory forensics. IRool Allocations as an
Information Source in Windows Memory Forensics, 2006.

[30] A. Schuster. Searching for processes and threads irosuft
windows memory dumps. IDigital Investigation, 2006.

[31] A. Seshadri, M. Luk, N. Qu, and A. Perrig. Secvisor: Aftin
hypervisor to provide lifetime kernel code integrity for
commodity oses, 2007.

[32] R. Treit. Some observations on rootkits.
http://blogs.technet.com/b/mmpc/archive/2010/01/07/
some-observations-on-rootkits.aspx, Jan. 2010.

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[33] D. Wagner. Mimicry attacks on host-based intrusion
detection system®roceedings of the 9th ACM conference
on computer and communi cations security, 2002.

[34] A. Walters. The volatility framework: Volatile memory
artifact extraction utility framework.
https://www. volatilesystems.com/default/volatility.

[35] Z. Wang, X. Jiang, W. Cui, and P. Ning. Countering kernel
rootkits with lightweight hook protection. IACM Conf. on
Computer and Communications Security, Nov. 2009.

[36] Y. Xie, H. Kim, D. O’'Hallaron, M. Reiter, and H. Zhang.
Seurat: A pointillist approach to anomaly detection. In
Recent Advances in Intrusion Detection, pages 238—257.
Springer, 2004.

[37] H. Yin, P. Poosankam, S. Hanna, and D. Song. Hookscout:
Proactive binary-centric hook detection.Rnoceedings of
the 7th Conference on Detection of Intrusions and Malware
& Mulnerability Assessment, Bonn, Germany, July 2010.

	Introduction
	Related Work
	Signature-based detection
	Behavioral heuristic analysis
	Sandbox execution
	System integrity checking
	Cross-view detection
	Invariant-based detection
	Physical memory analysis

	Approach
	System Details
	Configuration Analysis
	Code Analysis
	Data Analysis
	Kernel Entry Points
	Clustering
	Combined Distance
	Clusters

	Implementation
	Memory acquisition
	Dump Comparison

	Evaluation
	Windows 7 - QEMU Introspection
	Windows XP - Driver-acquired Memory
	Performance

	Discussion
	Conclusions
	References

